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Design and Implementation of Filters Using Transfer
Functions in theZ Domain

Da-Chiang Chang and Ching-Wen Hsue, Senior Member, IEEE

Abstract—In this paper, a novel approach composed of digital
signal-processing techniques and optimization algorithms is devel-
oped to design and implement filters at microwave frequencies. The
design phase begins with the adoption of digital filter prototypes
and the implementation phase is facilitated by using both para-
metric modeling techniques and optimization algorithms. All the
zeros of digital filter prototypes are removed first; the remaining
part of the prototypes is then transformed to an autoregressive
(AR) process by parametric modeling techniques. The values of
characteristic impedances of transmission lines synthesizing the fil-
ters are adjusted according to the AR process by optimization algo-
rithms. Both low-pass and bandpass filters are designed and then
implemented in the form of a microstrip line, and their frequency
responses are measured to validate the novel approach.

Index Terms—Microwave filter, transmission line, domain.

I. INTRODUCTION

M ICROWAVE filters [1] with their various responses can
be fabricated in different forms; examples are bandpass

or low-pass filters with nonuniform transmission lines [2], [3]
and bandpass or bandstop filters with coupled lines [4], [5].

Among conventional procedures for designing microwave
filters, either the image-parameter method or the insertion-loss
method provide the configurations of lumped-element circuits.
Once the values of lumped elements are obtained, Richard’s
transformation [6] is generally used to convert lumped filter
elements to stubs of the same electrical length. In addition,
Kuroda’s identities [7], [8] can be used to separate the stubs
with transmission-line sections of the same electrical length as
that of the stubs. In recent years, filter design has been studied
in the domain [9], [10] by replacing the phasor with the
delay operator, and several effective interesting methods have
been exploited. Actually, when stubs and transmission-line
sections are manufactured with the same electrical length and
are cascaded orderly, parameters describing the characteristics
of the network can also be represented as functions of the delay
operator. Therefore, abundant assortment of well-developed
discrete-domain techniques can be applied to the studies of
such networks. However, few are found in the literature.

In this paper, we first transform the chain scattering param-
eters of equal-electrical-length stubs and transmission-line sec-
tions to functions in the domain [11]. Transfer functions of

Manuscript received February 18, 2000; revised July 10, 2000. This work was
supported by the National Science Council, R.O.C. under Grant NSC 89-2213-
E011-044.

The authors are with the Department of Electronic Engineering, National
Taiwan University of Science and Technology, Taipei, Taiwan, R.O.C.

Publisher Item Identifier S 0018-9480(01)03314-2.

the networks composed of stubs and transmission-line sections
can be obtained by multiplying the chain scattering matrices of
the components. Each stub contributes a zero at (dc) if
it is short circuited or at (the unity frequency) if it is
open circuited. The zeros produce steep attenuation around dc
or around the unity frequency, making the networks with stubs
suitable for filtering applications. For a prescribed transfer func-
tion in the domain, we then employ an approach comprising
discrete signal processing (DSP) techniques and optimization
algorithms to design and implement filters at microwave fre-
quencies. We begin the design phase with the adoption of a dig-
ital filter prototype, which satisfies the defined specifications.
We then choose a configuration for the network that is proper
for the response of the filter. Both the transfer functions of the
network and the digital filter prototype are divided by the terms
concerning the zeros of transfer function of the network. In other
words, the original zeros of the transfer function of the network
are moved to the denominator of the digital filter prototype and
become poles. The remaining part of the transfer function of
the network is recognized to be an autoregressive (AR) process
[12]. We argue that if the response of the transfer function of the
network in the frequency domain is similar to that of the filter
prototype, the response of the AR process will also be similar
to that of thenewfunction computed from the digital filter pro-
totype by including extra poles. Based on this argument, para-
metric modeling algorithms are then applied to transform the
new function to an AR process. The implementation process is
to adjust the impedances of stubs and transmission-line sections
with optimization algorithms so that the difference between the
coefficients of both AR processes is as small as possible. To val-
idate the whole process, both low-pass and bandpass filters are
designed and then implemented in the form of microstrip line.
Responses of the filters are measured to validate the new ap-
proach.

II. FORMULATION OF THE TRANSFERFUNCTION IN THE

DOMAIN

The transfer function of a cascaded network can be found
by multiplying the chain scattering matrices of the components
composing the network. The chain scattering parameters,

of a two-port network are defined by assuming the
waves and at port 1 in Fig. 1 are dependent variables,
and the waves and at port 2 are independent variables,
i.e.,

(1)
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Fig. 1. Two-port network.

Fig. 2. Open-circuited stub.

The chain scattering matrix can be found from the scattering
matrix in the following way:

(2)

Let the length of all stubs and transmission-line sections be
, where is the wavelength of the lines at the normal-

izing angular frequency . In other words, the electrical length
of all components is 90at the normalizing frequency. Given the
impedance of an open-circuited stub to be, shown in Fig. 2,
we find that its chain scattering parameters are as follows:

(3)

where is the reference characteristic impedance andis the
propagation constant. The reference planes for both ports are at
the intersection of the stub and the reference transmission line.

Let be the angular frequency andbe the propagation delay
caused by the length. All the terms can
be represented in a new form by using , which can
be considered as a unit of delay, i.e.,

(4)

Fig. 3. Transmission-line section.

Consequently, we have

(5)

where .
If the stub is short circuited, its chain scattering parameters

can be expressed as follows:

(6)

By the same token, the chain scattering parameters of a trans-
mission-line section with impedance, shown in Fig. 3, can be
converted to functions in the domain as follows:

(7)

where . The reference planes for both
ports are at two connecting points betweenand .

By cascading open-circuited/short-circuited stubs and trans-
mission-line sections to form a network, the overall chain scat-
tering matrix of the network can be found by the multiplications
of the chain scattering matrix of each component, i.e.,

(8)

where is the number of the components, and , , ,
and are the matrix elements representing theth component.

Assume the network is composed ofopen-circuited stubs,
short-circuited stubs, and transmission-line sections. The

fact that the numerators of all the matrix elements in (5)–(7)
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have the form of ( and are real numbers)
leads to the following:

(9)
where all ’s are real numbers and can be determined by the
characteristic impedances of both stubs and transmission-line
sections. In addition, the term comes from each open-
circuited stub, the term comes from each short-cir-
cuited stub, and comes from the th transmis-
sion-line section.

When the output port of the network uses matched termina-
tion, we have in Fig. 1. The transfer function, denoted
as , can then be obtained by the inverse of , i.e.,

(10)

To make (10) in a form proper for the design purpose, we set
, which corresponds a scaling by two on the frequency

axis. The transfer function is then modified as follows:

(11)

where are functions of the char-
acteristic impedances of both stubs and transmission-line sec-
tions. Equation (11) reveals that has zeros at
(or the normalizing frequency ), which are contributed by
the open-circuited stubs, and zeros at dc, which are contributed
by the short-circuited stubs. If the zeros contributed from the
stubs are removed from , the remaining part of the transfer
function is recognized as an AR process multiplied by a term of

corresponding to some delay. We express the AR process
with the function and we get

(12)

Since the frequency response of the AR process is uniquely de-
termined by the coefficients and these coefficients are de-

Fig. 4. Design and implementation procedures for the filters.

termined by the characteristic impedances of both stubs and
transmission-line sections, we could adjust the impedances of
these components so that approximates a proposed AR
process.

III. D ESIGN AND IMPLEMENTATION OF FILTERS

The procedure for design and implementation of filters with
transfer functions in the domain is illustrated with the aid of
the flowchart shown in Fig. 4, and as outlined below.

1) Propose a digital filter prototype , which satisfies
the required specifications. Determine the configuration
of the network, which attempts to synthesize the function

. The configuration can be determined according to
the allocations of zeros; e.g., for a low-pass filter pro-
totype, we use open-circuited stubs, and for a bandpass
filter prototype, we use short-circuited stubs. The form
of transfer function of network can then be deter-
mined by the number of stubs and transmission-line sec-
tions used.

2) Divide both and by the terms of ,
which produce zeros at the normalizing frequency, the

’s, or at the dc, the ’s. We call the
function derived from as . In other words, the
zeros of becomes the poles of the function .

3) Based on the assumption that the transfer functions of the
network, , and the function are similar to each
other, we argue that and should have similar
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Fig. 5. Configuration of the low-pass filter.

magnitude response in the frequency domain. Since we
have known that represents some AR processes, it
is reasonable that we try to find an equivalent AR process
of the function by parametric modeling techniques.
This equivalent AR process is represented by a function

as follows:

(13)

where is the number of the components composing the
network.

4) The final step of the whole procedure is to implement the
filter. The values of the impedances of the components
composing the network are adjusted by using optimiza-
tion algorithms so that the coefficients of the denomina-
tors of and are as close as possible in a
specific sense.

This procedure has been used to implement several filters
and we find it is featured by the following facets. First of all,
the proposed approach takes advantage of the transmission-line
sections to improve the filter response; therefore, it is of a
nonredundant synthesis method. Furthermore, different from
the methods that synthesize filters according to the samples
in the frequency domain, this procedure synthesizes filters
according to the coefficients representing an AR process.
Since the number of the coefficients is usually much less than
that of the samples, our approach expedites. This is just as
well because an AR process is uniquely defined by one set
of coefficients; as long as the coefficient difference between

and is small enough, it is guaranteed that the
behavior of follows that of . We have also considered
the manufacturing limitation in the design procedure by the
designation of the lower and upper bounds of the values of
the components. In our experiments, it shows that there exists
a tradeoff between the circuit complexity and manufacturing
limitation; under a tighter limitation, we can use more compo-
nents to reach the prescribed performance. This feature shows
the adaptability of our approach.

The environment with which we develop our software
is MATLAB [13]. The structure of our program is simple,
consisting of one main function and another function for
optimization. A typical program is composed of about 100
command lines, and its execution time is less than 10 min when
a PC with a Pentium-III CPU is used.

In the following, to demonstrate the validity of this proposed
approach, we describe the design and implementation of one

low-pass filter and one bandpass filter. For both kinds of filters,
the reference impedance is always equal to 50 .

A. Low-Pass Filters in Microstrip Lines

A low-pass filter with its cutoff frequency equal to 2.0 GHz
is first considered. We adopt a prototype [11] as follows:

(14)

where , ,
, , and ,
, , . This prototype is

a Butterworth low-pass filter with its cutoff frequency equal
to . In other words, the normalizing angular frequency

is now rad/s. There are exactly five zeros
at the normalizing frequency, or at , which are to be
canceled by the zeros of transfer function of the network when
we are trying to find the function . This low-pass filter
is implemented with a network of the configuration shown
in Fig. 5. Since there are five open-circuited stubs and five
transmission-line sections interlaced, the transfer functions of
the network also has five zeros at the normalizing frequency.
As a result, the coefficients associated with the
can be found directly by the denominator of . That is,

for and for .
With the function for optimization, the values of the char-

acteristic impedances of both the stubs and transmission-line
sections are adjusted according to the goal that the differ-
ence between ’s and ’s is minimized in the sense of
least-mean-square (LMS) error. In other words, we want
to minimize the value of . Furthermore,
due to the limitation caused by fabrication techniques, the
values of the characteristic impedances of all components
are limited to be between 15–150 . The optimization
algorithms give the characteristic impedance values (in
ohms) of both stubs and transmission-line sections to be
(150-49.9)–(35.7-99.4)–(23.3-92.7)–(34.0-65.5)–(150-41.8) ;
in each parenthesis, the first value represents an open-circuited
stub and the second value represents a transmission-line
section.

The magnitude response of the transfer function of the filter
and that of the proposed idea filter are both shown

in Fig. 6, in which the cutoff frequency has been scaled to be
2.0 GHz. Note that, except for small ripples occurring in
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Fig. 6. Magnitude responses ofF (z) andT (z) for the low-pass filter with a
cutoff frequency at 2.0 GHz.

Fig. 7. Layout of the low-pass filter in the form of a microstrip line.

over the passband frequencies, inherits the most impor-
tant characteristics of : the location of the 3-dB corner and
attenuation slope beyond the cutoff frequency. This implies that
using as the target and using LMS error as the constraint are
proper strategies for the optimization algorithms to implement
the low-pass filter.

The filter is fabricated in the form of microstrip lines. The
substrate used is Duroid, of which the relative dielectric con-
stant is 2.5 and the height is 0.787 mm (31 mil). The layout of
the filter is shown in Fig. 7. The left-hand side is port 1, and the
right-hand side is port 2. On both sides, the reference impedance
lines (50 ) are placed. All components have the ideal electrical
length 90 at 4.0 GHz; however, to account for the effects of dis-
continuities, the physical lengths of the components have been
modified. The total length of the filter is 67.4 mm. We measure
the reflected and transferred parameters by using an HP 8510C
network analyzer. The result is presented in Fig. 8. Although the
3-dB corner moves to around 1.96 GHz because of both the con-
ductor and dielectric losses, the result proves the effectiveness
of our design/implementation approach.

B. Bandpass Filters in Microstrip Lines

We address design and implementation of a bandpass filter in
this section. The central frequency of the filter is 3 GHz; there-
fore, the normalizing angular frequency is equal to

rad/s. The bandwidth is set to be 40%. We cascade the basic
circuit shown in Fig. 9 to form a bandpass filter. Since each basic
circuit has two short-circuited stubs, it contributes two zeros at
dc. Note that because the transfer function of the network is a
periodic function with the period being , each basic circuit
also contributes two zeros at .

Fig. 8. Reflected and transferred scattering coefficients at port 1 of the
low-pass filter.

Fig. 9. Configuration of the basic circuit to compose bandpass filters.

For the bandpass filter, the prototype is given as follows:

(15)

where , ,
and ,

, . Since we use seven basic
circuits to implement this filter, the prototype is divided by

to obtain the corresponding . is then
transformed to an equivalent AR process. By the same opti-
mization algorithm, which minimizes the difference between

of and of in the sense of LMS error,
we obtain the characteristic impedances values (in ohms)
of both short-circuited stubs and transmission-line sections,
which are (27.1-98.6-49.5)–(98.9-96.3-89.5)–(93.3-64.2-
108.1)–(47.5-53.7-92.0)–(56.3-77.1-64.8)–(75.8-94.0-31.7)-
(85.9-59.9-27.3). In each parenthesis, the first two numbers
are the characteristic impedances of the stubs and the last
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Fig. 10. Magnitude responses ofF (z) andT (z) for the bandpass filter with
central frequency at 3.0 GHz and bandwidth of 40%.

Fig. 11. Layout of the bandpass filter with bandwidth of 40% in the form of
microstrip line. Note that each shunt stub is wrapped around to the ground.

Fig. 12. Reflected and transferred scattering coefficients at input and output
ports for the bandpass filter shown in Fig. 11.

one is the characteristic impedance of the transmission-line
section. Since the second stub of each parenthesis (except
the last parenthesis) and the first stub of the next parenthesis
are parallelly connected, we can use a single stub with their
equivalent characteristic impedance to replace the double stubs.

The magnitude responses of both and are shown
in Fig. 10. The ripples of over the passband frequencies
are around 0.5 dB. The insertion loss rate of is in good
agreement with that of for the frequencies outside the
passband. The strategy using as the target and LMS error

as the constraint for the optimization consideration satisfies the
need for the design of bandpass filters.

ThisbandpassfilterisalsoimplementedontheDuroidsubstrate
mentioned previously, and its layout is shown in Fig. 11. The fre-
quency responses of the filter are measured and shown in Fig. 12,
where the ripple over the passband is less than 0.3 dB. Moreover,
the insertion loss rate of the filter response outside the passband is
ingoodagreementwiththatof thepostulatedvalue.

The experimental results for several bandpass filters with dif-
ferent bandwidth requirements show that: 1) it is easier to find
appropriate solutions (the values of characteristic impedance)
for filters that have wider bandwidth and 2) with the same at-
tenuation rate outside the passband, more basic circuits are re-
quired to implement filters that have narrower bandwidth.

IV. CONCLUSION

A new approach to design and implement low-pass and band-
pass microwave filters has been proposed in this paper. Com-
bining the design and implementation phases in a framework,
this approach is featured by the utilization of well-developed
DSP techniques and optimization algorithms, which makes it
suitable for computer-aided design (CAD) applications. In addi-
tion, including the consideration of characteristic impedances of
transmission-line sections during the implementation phase, this
approach provides different configurations for filters other than
those conventional structures that are based on lumped-element
consideration and Richard’s transformation. Both low-pass and
bandpass filters are fabricated in microstrip lines to validate this
new approach at microwave frequencies. The experimental re-
sults conclude the usefulness of this new approach.
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